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Jacob Lewis Bourjaily

Problem 1
a) We are to use the spacetime diagram of an observer O to describe an ‘experiment’ specified by the

problem 1.5 in Schutz’ text.

We have shown the spacetime diagram in Figure 1 below.
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Figure 1. A spacetime diagram representing the experiment which was required to be
described in Problem 1.a.

b) The experimenter observes that the two particles arrive back at the same point in spacetime after
leaving from equidistant sources. The experimenter argues that this implies that they were released
‘simultaneously;’ comment.

In his frame, his reasoning is just, and implies that his t-coordinates of the two events
have the same value. However, there is no absolute simultaneity in spacetime, so a
different observer would be free to say that in her frame, the two events were not
simultaneous.

c) A second observer O moves with speed v = 3c/4 in the negative x-direction relative to O. We are
asked to draw the corresponding spacetime diagram of the experiment in this frame and comment on
simultaneity.

Calculating the transformation by hand (so the image is accurate), the experiment ob-
served in frame O is shown in Figure 2. Notice that observer O does not see the two
emission events as occurring simultaneously.
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Figure 2. A spacetime diagram representing the experiment in two different frames.
The worldlines in blue represent those recorded by observer O and those in green rep-
resent the event as recorded by an observer in frame O. Notice that there is obvious
‘length contraction’ in the negative x-direction and time dilation as well.

1



2 JACOB LEWIS BOURJAILY

d) We are to show that the invariant interval between the two emission events is invariant.

We can proceed directly. It is necessary to know that in frame O the events have
coordinates p1 = (5/2,−2) and p2 = (5/2, 2) while in frame O they have coordinates
p1 = γ(1,−1/8) and p2 = γ(4, 31/8) where γ2 = 16

7 .

∆s2 = (p1 − p2)2 = 16;

∆s2 = (p1 − p2)
2 = γ2 (−9 + 16) = 16.

We see that the invariant interval is indeed invariant in this pointless example.

Problem 2.
a) We are to show that rapidity is additive upon successive boosts in the same direction.

We may as well introduce the notation used in the problem: let v = tanh α and w =
tanh β; this allows us to write γ = 1√

1−tanh2 α
= cosh α and vγ = sinh α, and similar

expressions apply for β. We see that using this language, the boost transformations
are realized by the matrices1(

γ −vγ
−vγ γ

)
7→

(
cosh α − sinh a
− sinhα cosh α

)
, (a.1)

and similarly for the boost with velocity w. Two successive boosts are then composed
by2:(

cosh β − sinhβ
− sinh β coshβ

)(
coshα − sinhα
− sinhα cosh α

)
=

(
coshα cosh β + sinh α sinhβ − sinhα cosh β − cosh α sinhβ
− sinhα cosh β − cosh α sinhβ cosh α coshβ + sinh α sinhβ

)

=
(

cosh(α + β) − sinh(α + β)
− sinh(α + β) cosh(α + β)

)

This matrix is itself a boost matrix, now parameterized by a rapidity parameter
(α + β). Therefore, successive boosts are additive for rapidity.

‘óπερ ’έδει δε�ιξαι

b) Consider a star which observes a second star receding at speed 9c/10; this star measures a third
moving in the same direction, receding with the same relative speed; this build up continues consecu-
tively N times. What is the velocity of the N th star relative to the first? Give the explicit result for all N .

From the additivity of the rapidity, we see immediately that η′ = Nη where η =
arctanh(9/10) and η′ is the rapidity of the resulting velocity. That is η′ = arctanh(β)
where β is the recession velocity of the N th star relative to the first.

Recall a nice identity easily obtainable from the canonical definitions of tanh(x):

arctanh(x) =
1
2

log
(

1 + x

1− x

)
. (a.2)

Therefore, we have that

log
(

1 + β

1− β

)
= N log

(
1 + 9

10

1− 9
10

)
,

= log
(
19N

)
,

∴ 1 + β

1− β
= 19N ,

∴ β =
19N − 1
1 + 19N

. (a.3)

‘óπερ ’έδει πoι�ησαι

1Because we are considering successive boosts in one direction, the problem really lives in 1 + 1-dimensions and we can
make life easier with only 2× 2 matrices.

2We make use of some obvious identities in hyperbolic geometry.
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Problem 3.
a) Consider a boost in the x-direction with speed vA = tanh α followed by a boost in the y-direction

with speed vB = tanh β. We are to show that the resulting Lorentz transformation can be written as a
pure rotation followed by a pure boost and determine the rotation and boost.

This is a 2 + 1-dimensional problem—the entire problem involves only the SO(2, 1)
subgroup of the Lorentz group. Now, although there must certainly be easy ways of
solving this problem without setting up a system of equations and using trigonometric
identities, we will stick with the obvious answer/easy math route—indeed, the algebra
is not that daunting and the equations are easily solved.

The brute-force technique involves writing out the general matrices for both operations
and (consistently) matching terms. The two successive boosts result in


coshβ 0 − sinhβ

0 1 0
− sinhβ 0 cosh β







cosh α − sinhβ 0
− sinhα coshβ 0

0 0 1


 =




cosh α cosh β − sinh α cosh β − sinhβ
− sinh α cosh α 0

− cosh α sinhβ sinh α sinh β cosh β




(a.4)
And a rotation about ẑ through the angle θ followed by a boost in the (cos λ, sinλ)-

direction with rapidity η is given by3




cosh η − sinh η cosλ − sinh η sin λ
− sinh η cos λ 1 + cos2 λ(cosh η − 1) cos λ sin λ(cosh η − 1)
− sinh η sinλ cosλ sin λ(cosh η − 1) 1 + sin2 λ(cosh η − 1)







1 0 0
0 cos θ − sin θ
0 sin θ cos θ




=




cosh η − sinh η (cos λ cos θ + sin λ sin θ) − sinh η (sin λ cos θ − cosλ sin θ)
− sinh η cosλ cos θ + (cosh η − 1)(cos2 λ cos θ + cosλ sin λ sin θ) − sin θ + (cosh η − 1)(cos λ sinλ cos θ − cos2 λ sin θ)
− sinh η sin λ sin θ + (cosh η − 1)(sin2 λ sin θ + cos λ sin λ cos θ) cos θ + (cosh η − 1)(sin2 λ cos θ − cos λ sin λ sin θ)




The system is over-constrained, and it is not hard to find the solutions. For example,
the (00)-entry in both transformation matrices must match,

∴ cosh η = coshα cosh α. (a.5)

Looking at the (10) and (20) entries in each box, we see that

sinh η cosλ = sinh α;
sin η sin λ = cosh α sinhβ;

which together imply

∴ tan λ =
sinhβ

tanh α
. (a.6)

Lastly, we must find θ; this can be achieved via the equation matching for the (12)
entry:

sin θ = (cosh η − 1)
(
cosλ sin λ cos θ − cos2 λ sin θ

)
;

=⇒ tan θ
(
1 + cos2 λ (cosh η − 1)

)
= (cosh η − 1) cos λ sin λ,

∴ tan θ =
(cosh η − 1) cos λ sinλ

1 + cos2 λ cosh η − cos2 λ
. (a.7)

b) A spaceship A moves with velocity vA along x̂ relative to O and another, B, moves with speed
vB along ŷ relative to A. Determine the direction and velocity of the frame O relative to B.

To map this exactly to the previous problem, we do things backwards and transform
B → A followed by A → O relative to B. That is, let tanh α = −vB and tanh β = vA.
Now, the magnitude of the velocity of frame O relative to B has rapidity given by
equation (a.5), and is moving in the direction an angle π−(θ+λ) relative to A where
λ and θ are given by equations (a.6) and (a.7), respectively.

3This required a bit of algebra, but it isn’t worth doing in public.


